
42 The Delphi Magazine Issue 45

Under Construction:
Delphi 4 And Java, Part 2
by Bob Swart and Hubert Klein Ikkink

Two months ago we explored
CORBA, and I claimed that

CORBA was a good platform- and
language-independent way of com-
munication. Last time, we used CGI
and sockets as means of communi-
cating between Delphi 4 and Java
(JBuilder 2) applications. This
time, we will bring this quest to a
conclusion by using CORBA as a
communciation protocol between
a JBuilder Java applet and a Delphi
server-side application.

Recap
Last time, we implemented a ‘to do
list’ application that we could use
to manage a list of things to do. The
user interface consisted of a Java
applet, the server-side application
was written in Delphi. First, we
experimented with a plain CGI
solution, then followed this up with
a sockets approach.

We will now focus solely on
CORBA as communication proto-
col, which means transforming the
Delphi server into a CORBA server
implementing CORBA methods,
and the Java applet into a CORBA
client, calling these methods. In

theory, using JMIDAS for JBuilder
2, we can also decide to use DCOM
(MIDAS) instead of CORBA, but we
won’t go into that here.

In all three cases, the Delphi
server-side application would use
the unit IniMod to store the to do
list in a standard Windows .INI file
(BobNotes.ini), as implemented in
Listing 1.

Note that, compared with last
month, we have changed the imple-
mentation of the SetLines function.
We now pass the password, Passw,
as the third argument to the
ReadString method. As a conse-
quence, the password will be cor-
rect if no such User exists, in which
case that particular user (and pass-
word, and to do list) will be cre-
ated. This simple change now
enables us to create new users.

CORBA
The CORBA server
implements two meth-
ods: one to get the to do
list (with the User and
Password as input
arguments), and a
second to set the entire
to do list (User, Password
and ToDo as input argu-
ments). Although we

now have the ability to create a
new user (with a new password),
we still have no option to change
the password for a specific user.
This can be done manually on the
web server itself by the
webmaster.

Start a new project, and add a
CORBA object from the Multi-Tier
tab of the Object Repository. Spec-
ify CorBobNotes as the name of the
CORBA object, and make sure to
use the defaults for instancing
(Instance-per-client) and thread-
ing model (Single-threaded), as
shown in Figure 1.

The instancing option specifies
how the CORBA server application
creates instances of the CORBA
object. We can either specify
instance-per-client, meaning a new

unit IniMod;
interface
uses
SysUtils, Classes;

type
ELoginFailed = class(Exception);
procedure GetLines(const User, Passw: String;
Lines: TStrings); // raises ELoginFailed

procedure SetLines(const User,Passw: String;
Lines: TStrings); // raises ELoginFailed

implementation
uses
IniFiles;

var
IniFile: TIniFile = nil;

procedure GetLines(const User,Passw: String; Lines:
TStrings);

var
i: Integer;

begin
if (User <> '') and
(IniFile.ReadString(User,'password','') = Passw)
then begin
Lines.Clear;
for i:=1 to IniFile.ReadInteger(User,'lines',0) do
Lines.Add(IniFile.ReadString(User,IntToStr(i),''))

end else
raise ELoginFailed.Create('Login failed.')

end {GetLines};
procedure SetLines(
const User,Passw: String; Lines: TStrings);

var
i: Integer;

begin
if (User <> '') and (IniFile.ReadString(User, 'password',
Passw) = Passw) then begin
IniFile.EraseSection(User);
{ reset password }
IniFile.WriteString(User,'password',Passw);
IniFile.WriteInteger(User,'lines',Lines.Count);
{ linescount }
for i:=1 to Lines.Count do
IniFile.WriteString(User,IntToStr(i),Lines[Pred(i)])

end else
raise ELoginFailed.Create('Permission denied.')

end {SetLines};
initialization
IniFile := TIniFile.Create('.\BobNotes.ini');

finalization
IniFile.Free;
IniFile := nil

end.

➤ Listing 1:
IniMod ‘storage’ Unit.

➤ Figure 1:
CORBA Object Wizard.

May 1999 The Delphi Magazine 43

object is created for each client
connected (until the connection is
closed), or shared-instance, mean-
ing one single instance of the
CORBA object handles all client
requests. One unique instance-per-
client is our choice here.

Threading specifies how the
client requests call our CORBA
object interface. This can be set to
either single-threaded, where each
CORBA object gets only one client
request at a time, or multi-
threaded, where each client
request gets its own thread. To
avoid thread conflicts, I have speci-
fied single-threaded here (again
the default), which means that the
CORBA object instance data is
safe, but I should still protect
global memory from potential
thread conflicts. With multi-
threading we would also have to
protect instance data itself.

Directly after we’ve created this
CORBA object, we should save the
entire project. Specify Unit1 for the
main form and Unit2 for the CORBA
object, with BobNotes as the project
name. Now, go to Unit2 and start
the Type Library (using the View |
Type Library menu option in
Delphi) in order to add the two
CORBA methods GetLines and
SetLines.

Since we need to define two
methods that will be callable by a
Java application, we must be a little
careful with the argument types.
There is no Delphi String type in
the dropdown list of argument
types, but I do see PChar, which
looks safe enough at the first
glance. So, I’ve made all the argu-
ments (User, Password and Lines) of
type PChar. We’ll handle conver-
sion details later, let’s first concern

ourselves with the Delphi to
CORBA to Java communication
issues.

The Delphi 4 Pascal IDL file that
gets generated for the GetLines and
SetLines methods according to the
type library definition shown in
Figure 2 (using PChars) is shown in
Listing 2.

Listing 2 doesn’t contain a real
IDL file, but the Delphi Pascal
‘dialect’ of an IDL file (that is, easier
to read for Delphi users, but not
readable by other CORBA develop-
ment environments). In order to let
JBuilder read the IDL for the
CorBobNotes CORBA Server, we
must use the type library again, but
this time click on the upper right

arrow button
(Export to CORBA
IDL) and export to
a real CORBA IDL
file that can be
imported by
JBuilder. This IDL

file, which can be seen in Listing 3,
translates the PChar type into a
standard IDL string type, which is
translated by JBuilder into a stan-
dard String type again.

When the JBuilder applet calls
the GetLines method, the Java
String arguments are marshalled
into IDL string arguments, which
are passed to the Delphi CORBA
server, and then un-marshalled
into Delphi PChar arguments.
Unfortunately, the last step in this
connection doesn’t work cor-
rectly. It appears that the three
PChar arguments point to the same
location and, what’s worse, when
we return something (using
GetLines), the JBuilder CORBA
client isn’t able to use the result:
instead it produces an exception.

Of course, using a Delphi CORBA
client that calls the GetLines
method using PChar arguments
works just fine, because marshal-
ling from PChar to an IDL string and
un-marshalling it back to a PChar
again yields the same result. But a
PChar can’t be transformed into a
Java string, or so it seems. The
reason why I show this here is
because CORBA claims to be
independent of both platform and

typelib BobNotes
[uuid '{883E4362-E5AC-11D2-92D0-0080C7C19BE0}',
version 1.0,
helpstring 'Project1 Library'];

uses STDOLE2.TLB, STDVCL40.DLL;
ICorBobNotes = interface(IDispatch)
[uuid '{883E4363-E5AC-11D2-92D0-0080C7C19BE0}',
version 1.0,
helpstring 'Dispatch interface for CorBobNotes Object',
dual,
oleautomation]

procedure GetLines(none User, Password: PChar; out Lines: PChar)
[dispid $00000001]; safecall;

procedure SetLines(none User, Password, Lines: PChar)
[dispid $00000002]; safecall;

end;
CorBobNotes = coclass(ICorBobNotes [default])
[uuid '{883E4365-E5AC-11D2-92D0-0080C7C19BE0}',
version 1.0,
helpstring 'CorBobNotes Object'];

end.

➤ Listing 2: Delphi Pascal IDL for BobNotes.

➤ Figure 2:
Type Library
using PChar
arguments.

module BobNotes
{
interface ICorBobNotes;
interface ICorBobNotes
{
void GetLines(in string User, in string Password, out string Lines);
void SetLines(in string User, in string Password, in string Lines);

};
interface CorBobNotesFactory
{
ICorBobNotes CreateInstance(in string InstanceName);

};
};

➤ Listing 3: CORBA IDL file for BobNotes (using PChar arguments).

44 The Delphi Magazine Issue 45

language, but the weakness in this
scheme is the marshalling and
un-marshalling algorithm, which
must be able to perform the trans-
formation between platforms and,
in this case, languages without
problems.

WideString
Back to the drawing board, or the
type library in this case. Let’s see
what other types we might choose
from for our arguments.

Like I said, there are no regular
string types, but there is a
WideString type (wstring IDL type)
that we can use. So, just change the
three argument types of GetLines
and SetLines to WideString, and
refresh the implementation (click
the button with the two green
arrows). This time, the IDL file will
use wstring types, and I can tell you
that it will work with JBuilder 2, as
you’ll see in a little while.

First, let’s implement the
GetLines and SetLines routines,
using WideString type parameters.
The CORBA server implementa-
tion of TCorBobNotes can be seen in
Listing 4. Note that we’re using the
Memo1 component on Form1 (in
Unit1) as a debug window for our
CORBA server to see what the
others are doing. Note also that
this is generally not a very good
idea, as each CORBA client could
write to this (single) CORBA server

and the same Unit1.Form1.Memo1,
meaning potential multi-threaded
issues. But since it’s a mere debug
version for this article only, you’ll
get the picture (and you promise
you won’t do anything like this in
real life, right?).

The Java applet would need to
instantiate this CORBA server, and
call the GetLines or the SetLines
functions.

CORBA And JBuilder 2
In comparison with the implemen-
tations in the previous article, the
CORBA implementation on the
client side this time is very
straightforward. JBuilder 2 Client/
Server has a lot of the VisiBroker
tools integrated in the IDE. This

makes developing the Java applet
with CORBA implementation easy.

The place to begin is with the IDL
file generated by Delphi. This IDL
file can be added to our JBuilder 2
project. Once we have got the IDL
file in our project we are ready to
process it. We will use the IDL to
automatically generate all neces-
sary Java classes for our Java
applet.

Right click on the IDL file and
select the IDL properties...
option. This will open a dialog
window with different options
VisiBroker will use when the IDL
file is processed. We can leave all
options unchanged for our Java
applet (after all, we must
emphasise the Delphi side).

➤ Figure 3: Type Library using WideString arguments.

unit Unit2;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
ComObj, StdVcl, CorbaObj, BobNotes_TLB;

type
TCorBobNotes = class(TCorbaImplementation, ICorBobNotes)
private
public
protected
procedure GetLines(const User, Password: WideString;
out Lines: WideString); safecall;

procedure SetLines(const User, Password, Lines:
WideString); safecall;

end;
implementation
uses
CorbInit, IniMod, Unit1;

procedure TCorBobNotes.GetLines(const User,
Password: WideString; out Lines: WideString);

var
Notes: TStringList;

begin
Form1.Memo1.Lines.Add('---');
Form1.Memo1.Lines.Add('Call to GetLines:');
Form1.Memo1.Lines.Add(' User = ['+User+']');
Form1.Memo1.Lines.Add(' Password = ['+Password+']');
Notes := TStringList.Create;
try
IniMod.GetLines(User, Password, Notes);

Lines := Notes.Text;
finally
Notes.Free

end;
Form1.Memo1.Lines.Add(' Lines = ['+Lines+']')

end;
procedure TCorBobNotes.SetLines(
const User, Password, Lines: WideString);

var
Notes: TStringList;

begin
Form1.Memo1.Lines.Add('---');
Form1.Memo1.Lines.Add('Call to SetLines:');
Form1.Memo1.Lines.Add(' User = ['+User+']');
Form1.Memo1.Lines.Add(' Password = ['+Password+']');
Notes := TStringList.Create;
try
Notes.Text := Lines;
IniMod.SetLines(User, Password, Notes);

finally
Notes.Free

end;
Form1.Memo1.Lines.Add(' Lines = ['+Lines+']')

end;
initialization
TCorbaObjectFactory.Create('CorBobNotesFactory',
'CorBobNotes', 'IDL:BobNotes/CorBobNotesFactory:1.0',
ICorBobNotes, TCorBobNotes, iMultiInstance,
tmSingleThread);

end.

➤ Listing 4: Implementation
CORBA Server in Delphi.

46 The Delphi Magazine Issue 45

When we close the dialog
window, we can execute the Make
command for our IDL file. Select
the IDL file and right click with the
mouse. Then select the Make com-
mand from the popup menu. Now
the Visigenic IDL2JAVA compiler is
started and all the necessary files,
such as stubs and auxiliary files,
are generated for us.

After the compile we can see a
lot of new files in our project
attached to the IDL file (simply
click on the + symbol to see them).
We can inspect these Java source
files, but we must not change them.
This is because when we do a
rebuild of the IDL file all the files
will be overwritten with new ones.
Notice that the name of the pack-
age used for the Java source files is
the same as the module name in
the IDL file.

We now are able to use the gen-
erated files for our own applet. In
order to be able to use the CORBA
server, written in Delphi, we must
take two steps. First of all, we must
initiate an ORB object, so we are
ready to use objects using the ORB.
Next we must create an instance of
the server in our applet. Then we
can use the methods defined in the
server class: GetLines and
SetLines.

Initiating an ORB object is very
simple. The following line creates
an instance of the ORB named orb:

org.omg.CORBA.ORB orb =
org.omg.CORBA.ORB.init(
new String[] {}, null);

We use the static method init()
defined in the ORB class to create a
new instance. This method takes
two arguments, which aren’t
important for our Java applet, so
we leave them simple.

We have the ORB object and we
can create instances of (server)
objects available. And the Delphi
server has one class to offer:
CorBobNotesFactory. The CorBob
NotesFactory is able to create

instances of CorBobNotes objects.
To create an instance of
CorBobNotesFactory we must use
the following line:

CorBobNotesFactory factory =

CorBobNotesFactoryHelper.bind(

orb);

For creating an instance we use the
bind() method defined in the
automatically generated Java class
CorBobNotesFactoryHelper. The
argument is the ORB object we
created earlier.

CorBobNotesFactory has only one
method: createInstance(). We use
this method to create an instance
of a CorBobNotes object:

IcorBobNotes bobNotes =
factory.CreateInstance(
“CorBobNotes”);

And once we have a reference to
the CORBA server object we can
use it in our Java applet. The
IcorBobNotes interface defines two
methods: SetLines and GetLines.
We can simply invoke these
methods from within our applet:

BobNotes.SetLines(
“Bob”, “swart”,
“New appointment - May 1");

When using the GetLines()method
we must pay special attention to
the third argument, Lines, which is
of class type org.omg.CORBA.
StringHolder. In the IDL this argu-
ment is defined as an out argument,
meaning that this argument will
contain a return value. In order to
be able to store this return value of
type String (and for us to get the
value) we must use the
StringHolder class. Keep in mind
that the argument cannot be of
class type String, because the con-
tents of a String object cannot be
changed. The value property of
this StringHolder class contains
the return value as a Stringobject.

Listing 5 shows a short example
of an invocation of the GetLines()
method.

Well, folks, that wasn’t too hard,
was it? JBuilder 2 Client/Server
supports CORBA in a straightfor-
ward way and because it is
integrated into the IDE it is very
easy to use. By the way, if you want
to know about the forthcoming
JBuilder 3 and how it compares
with version 2, check the review
that we will be doing for the June
issue of Developers Review!

Conclusion
Combined with last month, we’ve
seen at least three ways in which a
Java applet can communicate with
a Delphi server-side application.
Last time, we explored CGI and
sockets, and this time we used
CORBA as communication proto-
col. Using JMidas, we can even use
DCOM (see www.borland.com/
midas for details).

Next time, we’ll take a look at
nested tables, another new feature
introduced in Delphi 4. We’ll see
how they work, when to use them,
and how they can especially bene-
fit multi-tier applications written in
Delphi. All this and more next time,
so stay tuned...

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is a technical
consultant and webmaster using
Delphi, JBuilder and C++Builder
for Bolesian and freelance
technical author. In his spare time,
Bob likes to watch video tapes of
Star Trek Voyager and Deep Space
Nine with his 5-year-old son
Erik Mark Pascal and his 2.5-year-
old daughter Natasha Louise
Delphine.

Hubert A Klein Ikkink (aka
Mr.Haki) has been using Java and
JBuilder since they were invented
and has wide commercial experi-
ence in the development and de-
ployment of Java applications.
Hubert is the webmaster and
writes articles for Mr.Haki’s
JBuilder Machine at drbob42.
com/JBuilder, trains and speaks
on Java and is a freelance author
too [He probably doesn’t have
any spare time! Ed].StringHolder holder = new StringHolder();

bobNotes.GetLines("Bob", "swart", holder);
System.out.println("holder.value? " + holder.value);

➤ Listing 5

	Recap
	CORBA
	WideString
	CORBA And JBuilder 2
	Conclusion

